首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4573篇
  免费   56篇
  国内免费   183篇
电工技术   10篇
综合类   75篇
化学工业   953篇
金属工艺   1215篇
机械仪表   240篇
建筑科学   65篇
矿业工程   87篇
能源动力   332篇
轻工业   23篇
石油天然气   34篇
武器工业   11篇
无线电   100篇
一般工业技术   1370篇
冶金工业   206篇
原子能技术   54篇
自动化技术   37篇
  2023年   41篇
  2022年   75篇
  2021年   138篇
  2020年   114篇
  2019年   121篇
  2018年   110篇
  2017年   132篇
  2016年   91篇
  2015年   117篇
  2014年   223篇
  2013年   271篇
  2012年   204篇
  2011年   403篇
  2010年   293篇
  2009年   356篇
  2008年   280篇
  2007年   317篇
  2006年   251篇
  2005年   187篇
  2004年   156篇
  2003年   155篇
  2002年   116篇
  2001年   99篇
  2000年   99篇
  1999年   80篇
  1998年   90篇
  1997年   60篇
  1996年   47篇
  1995年   58篇
  1994年   30篇
  1993年   26篇
  1992年   13篇
  1991年   14篇
  1990年   16篇
  1989年   11篇
  1988年   5篇
  1987年   5篇
  1986年   2篇
  1983年   2篇
  1981年   3篇
  1965年   1篇
排序方式: 共有4812条查询结果,搜索用时 15 毫秒
11.
A promising electrocatalyst containing variable percentage of V2O5–TiO2 mixed oxide in graphene oxide support was prepared by embedding the catalyst on Cu substrate through facile electroless Ni–Co–P plating for hydrogen evolution reaction. The solvothermal decomposition method was opted for tuning the crystalline characteristics of prepared material. The optimized mixed oxide was well characterized, active sites centres were identified and explained by X-ray diffraction, high resolution tunnelling electron microscopy, scanning electron microscopy coupled with energy dispersive X-ray and X-ray photon spectroscopy analysis. The structural and electronic characteristics of material was done by fourier transform infrared spectroscopy and the electrochemical behaviour of the prepared material was evaluated by using Tafel plot, electrochemical impedance analysis, linear sweep voltammetry, open circuit analysis and chronoamperometry measurements. The results show the enhanced catalytic activity of Ni–Co–P than pure Ni–P plate, due to synergic effect. Moreover, the prepared mixed oxide incorporated Ni–Co–P plate has a high activity towards HER with low over potential of 101 mV, low Tafel slope of 36 mVdec?1, high exchange current density of 9.90 × 10?2 Acm?2.  相似文献   
12.
Titanium alloys possess excellent corrosion resistance in marine environments,thus the possibility of their corrosion caused by marine microorganisms is neglected.In this work,microbiologically influenced corrosion (MIC) of TC4 titanium alloy caused by marine Pseudomonas aeruginosa was investigated through electrochemical and surface characterizations during a 14-day immersion test.Results revealed that the unstable surface caused by P.aeruginosa resulted in exposure of Ti2O3 and severe pitting corrosion with maximum pit depth of 5.7 μm after 14 days of incubation.Phenazine-1-carboxy[ate (PCN),secreted by P.aeruginosa,promoted extracellular electron transfer (EET) and accelerated corrosion.Deletion of the phzH gene,which codes for the enzyme that catalyzes PCN production,from the P.aeruginosa genome,resulted in significantly decreased rates of corrosion.These results demonstrate that TC4 titanium alloy is not immune to marine MIC,and EET contributes to the corrosion of TC4 titanium alloy caused by P.aeruginosa.  相似文献   
13.
Since titanium has high affinity for hydrogen and reacts reversibly with hydrogen,the precipitation of titanium hydrides in titanium and its alloys cannot be ignored.Two most common hydride precipitates in α-Ti matrix are γ-hydride and δ-hydride,however their mechanisms for precipitation are still unclear.In the present study,we find that both γ-hydride and δ-hydride phases with different specific orienta-tions were randomly precipitated in the as-received hot forged commercially pure Ti.In addition,a large amount of the titanium hydrides can be introduced into Ti matrix with selective precipitation by using electrochemical treatment.Cs-corrected scanning transmission electron microscopy is used to study the precipitation mechanisms of the two hydrides.It is revealed that the γ-hydride and δ-hydride precipita-tions are both formed through slip + shuffle mechanisms involving a unit of two layers of titanium atoms,but the difference is that the γ-hydride is formed by prismatic slip corresponding to hydrogen occupy-ing the octahedral sites of α-Ti,while the δ-hydride is formed by basal slip corresponding to hydrogen occupying the tetrahedral sites of cα-Ti.  相似文献   
14.
Porous bony scaffolds are utilized to manage the growth and migration of cells from adjacent tissues to a defective position. In the current investigation, the effect of titanium oxide (TiO2) nanoparticles on mechanical and physical properties of porous bony implants made of polymeric polycaprolactone (PCL) is studied. The bio-nanocomposite scaffolds are prepared with composition of nanocrystalline hydroxyapatite (HA) and TiO2 powder using the freeze-drying technique for different weight fractions of TiO2 (0 wt%, 5 wt%, 10 wt%, and 15 wt%). In order to identify the microstructure and morphology of the fabricated porous bio-nanocomposites, the X-ray diffraction (XRD), atomic force microscope (AFM) and scanning electron microscopy (SEM) are employed. Also, the biocompatibility and biodegradability of the manufactured scaffolds are examined by placing them in a simulated body fluid (SBF) for 21 days, their weight and pH changes are measured. The rate of degradation of the PCL-HA scaffold can be controlled by varying the percentage of its constituent components. Due to an increasing growth and activity of bone cells and the apatite formation on the free surface of the fabricated bio-nanocomposite implants as well as their reasonable mechanical properties, they have the potential to be used as a bone substitute. Additionally, with the aid of the experimentally extracted mechanical properties of the scaffolds, the vibrational characteristics of a beam-type implant made of the proposed porous bio-nanocomposites are explored. The results obtained from SEM image indicate that the scaffolds produced by the employed method have high total porosity (70%–85%) and effective porosity. The pore size is obtained between 60 and 200 μm, which is desirable for the growth and propagation of bone cells. Also, it is revealed that the addition of TiO2 nanoparticles leads to reduce the rate of dissolution of the fabricated bio-nanocomposite scaffolds.  相似文献   
15.
The micro-arc oxidation (MAO) coatings were prepared in four different electrolyte systems, including mixed acid, phosphate, phosphate-aluminate and phosphate-silicate electrolytes. The friction and wear properties of MAO coatings in ambient air, seawater and four groups of saline solutions related to seawater were investigated. The results showed that the addition of silicate to phosphate could increase the density of the coating. The phosphate-aluminate ceramic layer exhibited the lowest wear rate in various environments. Additionally, the friction coefficient and wear rate of MAO coating in seawater were lower than those in ambient air, which was due to the boundary lubrication effect of seawater. Meanwhile, the presence of divalent metal salts in seawater made its lubricity better than other salt solutions.  相似文献   
16.
17.
《Ceramics International》2022,48(5):6322-6337
To optimize the corrosion, bioactivity, and biocompatibility behaviors of plasma electrolytic oxidation (PEO) coatings on titanium substrates, the effects of five process variables including frequency, current density, duty cycle, treatment time, and electrolyte Ca/P ratio were evaluated. In our systematic study, a Taguchi design of experimental based on an L16 orthogonal array was used. For this, the coatings characteristics such as the surface roughness, wettability, rutile to anatase and Ca/P ratios, and corrosion polarization resistance were investigated. After determining the optimum process variables for each response, the apatite forming ability in SBF (bioactivity behavior) and MG63 cell attachment and flattening (biocompatibility behavior) for two groups of coatings were examined. The first group was optimized based on the maximum corrosion polarization resistance and the variables were set as the frequency of 2000 Hz, the current density of 5 A/dm2, the duty cycle of 30%, the treatment time of 5 min, and the Ca/P ratio of 0.65 at. % in the electrolyte. For the second group, the maximum surface roughness, greatest Ca/P ratio, and highest wettability as well as the minimum rutile to anatase ratio in coatings, could be obtained when the variables were set as the frequency of 10 Hz, the current density of 12.5 A/dm2, the duty cycle of 50%, the treatment time of 12.5 min, and the Ca/P ratio of 1.70 at. % in the electrolyte. The results showed that while both groups of coatings indicated a significant apatite forming ability and can serve as bioactive coatings, a proper attachment and flattening of cells and consequently, the favorable biocompatibility properties were seen only in the first group.  相似文献   
18.
The titanium dihydride (TiH2) powder metallurgy has been attracted a lot of attention, but TiH2 powder is difficult to press moulding. In this paper, the titanium hydride powder metallurgy including TiH2 and unsaturated titanium hydrides (TiH1.5) was investigated simultaneously compared with pure titanium metal powder metallurgy. The results indicates that the titanium hydride powder metallurgy is accompanied by the deoxidation self-purification effect during dehydrogenation process for both of TiH2 and TiH1.5, which have higher sintering density than pure titanium. There are the three stages relative to densification rate, namely the slow, rapid and full densification stages for all of three materials. The compressive yield strengths increase rapidly in the rapid densification stage and are unchangeable almost in the full densification stage after holding 2 h at 1300 °C. The titanium hydride powder metallurgy is helpful to obtain much better mechanical properties than the pure titanium metal powder metallurgy. Here the compressive yield strength of the as-sintered TiH2 compact with the maximum hydrogen content is the best but has very small difference compared with that of the as-sintered TiH1.5 compact after full sintering densification.  相似文献   
19.
《Ceramics International》2020,46(13):20993-20999
Titanium nitride (TiN) as an alternative plasmonic ceramic material with superb properties including high hardness, outstanding corrosion resistance and excellent biocompatibility, has exhibited great potential for optical biochemical sensing applications. By sputtering about 35 nm–50 nm TiN on glass (f-TiN), the surface was found to provide sensing capability toward NaCl solution through the phenomenon of surface plasmon resonance. When the TiN film of about 27 nm–50 nm in thickness was sputtered onto a roughened glass surface (R–TiN), the sensing capability was improved. This was further improved when holes at nanoscale were created in the TiN film of about 19 nm–27 nm in thickness (NH–TiN). The roughened surface and nanohole patterns provided confinement of surface plasmons and significantly improved the sensitivity toward the local refractive index changes. In detail, the calculated refractive index resolution (RIR) of the optimal NH–TiN sensors for NaCl was found to be 9.5 × 10−8 refractive index unit (RIU), which had outperformed the f-TiN and R–TiN sensors. For biosensing, the optimized NH–TiN sensor was found to be capable to detect both small and large biomolecules, i.e. biotin (molecular weight of 244.3 g/mol) and human IgG (160,000 g/mol), in a label-free manner. Especially, the NH–TiN sensor significantly improved sensitivity in detecting small molecules due to the localized plasmonic confinement of electromagnetic field. Combining with the excellent mechanical and durability properties of TiN, the proposed NH–TiN can be a strong candidate for plasmonic biosensing applications.  相似文献   
20.
《Ceramics International》2020,46(2):1545-1550
Ti-bearing blast furnace slags have been regarded as an important secondary material in modern society, and the efficient recycling of Ti oxides from it is of key interest. For this reason, more thermodynamic data is needed regarding the phase relations in different composition ranges and sections. Therefore, the equilibrium phase relations of CaO–MgO–SiO2–Al2O3–TiO2 system in a low w(CaO)/w(SiO2) ratio of 0.6–0.8 at 1250 °C in air and fixed concentrations of MgO and Al2O3, were investigated experimentally using a high temperature equilibration and quenching method followed by SEM-EDS (Scanning Electron Microscope and Energy Dispersive X-ray Spectrometer) analyses. The equilibrium solid phases of perovskite (CaO·TiO2), a pseudo-brookite solid solution (MgO·2TiO2, Al2O3·TiO2)ss, and anorthite (CaO·Al2O3·2SiO2) were found to coexist with the liquid phase at 1250 °C. The calculated results of Factsage and MTDATA were used for comparisons, and significant discrepancies were found between predictions and the experimental results. The 1250 °C isotherm has been constructed and projected on the CaO–SiO2–TiO2-8 wt.% MgO-14 wt% Al2O3 quasi-ternary plane of the phase diagram. The obtained results provide new fundamental data for Ti-bearing slag recycling processes, and they add new experimental features for thermodynamic modeling of the high-order titanium oxide-containing systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号